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Abstract

Global optimization is one of the key challenges in computational physics as several problems, e.g. protein structure
prediction, the low-energy landscape of atomic clusters, detection of community structures in networks, or model-param-
eter fitting can be formulated as global optimization problems. Extremal optimization (EO) has become in recent years one
particular, successful approach to the global optimization problem. As with almost all other global optimization
approaches, EO is driven by an internal dynamics that depends crucially on one or more parameters. Recently, the exis-
tence of an optimal scheme for this internal parameter of EO was proven, so as to maximize the performance of the algo-
rithm. However, this proof was not constructive, that is, one cannot use it to deduce the optimal parameter itself a priori.
In this study we analyze the dynamics of EO for a test problem (spin glasses). Based on the results we propose an online
measure of the performance of EO and a way to use this insight to reformulate the EO algorithm in order to construct
optimal values of the internal parameter online without any input by the user. This approach will ultimately allow us
to make EO parameter free and thus its application in general global optimization problems much more efficient.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Determining global minima of an objective function in a high-dimensional search space is a challenge for
many scientists, e.g. in research concerned with spin glasses [1], in protein structure prediction [2–7,9], in the
effective parameterization of biomolecular simulations [10,11], or in ligand docking [12,13]. In a physical con-
text these objective functions are referred to as potential energy surfaces. Finding such a global extremum for
a given system is the global optimization problem [14,15].
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There are numerous ways to determine global minima probabilistically [16] which perform very well – the
most prominent being Simulated Annealing [17,18]. Other, more powerful approaches were suggested after-
wards, such as genetic algorithms [8], basin hopping [9], or parallel tempering [19]. A current topic of debate
is whether a deterministic, reliable and efficient approach to the global optimization problem is feasible or
whether global optimization is NP-complete also for physical system [20–23]. Whatever the outcome, experi-
ence tells us that global optimization is a computationally very challenging enterprise and therefore there is
still a pressing need to develop better/efficient methodologies. Here we describe a new, parameter free
approach that constitutes a self-contained, adaptive methodology alleviating several problems of established
algorithms.

2. Extremal optimization

Since its advent, extremal optimization (EO) has turned out to be a very powerful technique for solving
global optimization problems. Starting with the first study by Boettcher et al. [24] the method was later applied
to problems in artificial intelligence [25], continuous problems such as Lennard–Jones atomic clusters [26],
spin glasses [1,27], and detection of community structures in networks [28].

The basic idea behind EO is derived from the Bak–Sneppen model of evolution [29]. The landmark insight
of this theory is the importance of species interaction: the fitness of one species is not solely determined by the
environment (which would be the static picture put forward by the genetic algorithm community) but also by
the other species in the ecology, that is, its competitors. This competition is then responsible for chain reac-
tions, e.g. after a particular species crosses a certain fitness threshold. In this model of macroevolution the
resulting dynamics displays self-organized criticality, which is the outcome of co-evolution, and sudden bursts
or avalanches of evolutionary activity. The volatility caused by self-organized criticality makes the whole ‘con-
figurational space’ available to the evolutionary dynamics – a trait we also would like to have in a global opti-
mization framework. EO was developed in analogy to this paradigm: the various degrees of freedom of a
global optimization problem ‘compete’ against each other in evolving better solutions, while at the same time
selection against bad solutions should also occur.

In more detail: EO is, in general, defined for an objective function Eð~xÞ, where~x is an element of some set
X n and X n is the set of all possible states (e.g. a protein configuration in dihedral space or a spin configura-
tion). On X n there exists a neighborhood relation Nð~xÞ � X n which denotes the set of configurations that can
be reached in one ‘step’. A state~x is given by a particular choice of entries~x ¼ ðx1; x2; . . . ; xnÞ. For each of the n

degrees of freedom of a global optimization problem, EO assumes a fitness kiðxij~xÞ that resembles the contri-
bution of the degree of freedom i to the overall function value Eð~xÞ while keeping the remaining n � 1 com-
ponents of~x fixed.

EO now proceeds as follows: for a configuration~x we compute all the ki-values. These values give rise to a
ranking ki such that 8pairsði; jÞki 6 kj iff kj 6 ki. We now provide a probability distribution pki

from which a
rank ki is drawn. The corresponding degree of freedom i is then changed in ~x to a new value (in Ising spin
systems this corresponds to a spin flip, in systems with higher spins we just change xi to one of the other spin
states with equal probability, see [30]). The new configuration is now taken to be our current~x and we iterate
until some given maximal iteration number is reached. Using the existence of such fitness enables us here to
select against bad contributions by a particular i (if we assume pk 6 pl for all kk P kl). At the same time we
have also implemented a potential co-evolution, as changing one i immediately influences the fitness values
of the other degrees of freedom, as in the Kim–Sneppen model.

The original formulation of EO chooses a rank k according to a probability pk :¼ N
�1 � k�s, with some scal-

ing exponent s and N an appropriate normalization constant. We refer to this variant as the s-EO algorithm
in subsequent parts of this paper.

Middleton [31] introduced a memory kernel in the dynamics by s-ranking the ~ki :¼ ki þ C � hi instead of the
original fitnesses ki, where hi is the number of times the degree of freedom i was chosen. This leads to a weak
self-avoidance in the space of degrees of freedom and always pushes the algorithm into unexplored regions.
However, this happens at the cost of the introduction of another internal parameter C that crucially influences
the performance of this algorithm.
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A first study [32] on the performance of s-EO under changing internal parameters revealed two distinct
phases of greedy and random exploration. The optimal behavior, in the sense of efficiency, was found to lie
on the boundary, that is, on a critical point of the sole s-EO parameter s.

To study the performance of EO Heilmann, Hoffmann, and Solamon [30] applied linear programming
arguments to investigate potential increases in the average minimal energy obtained in several runs. They were
able to give a rigorous proof on the existence of a time-dependent distribution of ranks to be chosen. According
to their study one should employ in each step a rectangular distribution of ranks up to some maximal ranking
number determined implicitly by a given fitness threshold kTA. This threshold is in general time-dependent. We
note that there always exists an isomorphic, non-trivial, time-dependent mapping between fitness thresholds
kTA and ranking thresholds kTA. We will refer to this procedure as threshold-acceptance EO.

3. The test problem

We focus here on test cases, defined on a high-dimensional domain, as only those problems allow for a
judgment of the performance of global optimization algorithms [33]. A particular, striking example of such
a problem is a spin glass [34] with a complex potential energy surfaces that shows a broad distribution of bar-
rier heights. The energy of a configuration~s of Ising spins si 2 [�1;+1] in the absence of an external field is
Eð~sÞ ¼

P
hi;jiJ ijsisj, where the summation Æi, jæ runs over nearest neighbors. We draw the couplings Jij from a

Gaussian distribution. The dynamics of e.g. a Monte-Carlo process on this potential energy surfaces displays
critical slowing down [34]. This is a ramification of the fact that a spin glass is a very difficult optimization
problem and therefore a good test case for this study.

We obtained exact ground states and their respective energies Eo
i from the Spin Glass-Server [35] of the Jün-

ger group for comparison with our results. We constructed 50 independent two-dimensional spin glass replica
of size 20 · 20 spins. On each replica we performed three independent optimization runs, thus dealing with
statistically relevant numbers (150 independent tests). The proposed energies during a sampling give rise to
a time series of energies Ei. Note that time here refers to the steps in the algorithm and not to the dynamics
of the spin system in reality. The energies in this time series (see below) Ei are expressed as relative differences

with the real ground state energy Eo
i of the respective replica i as �i :¼ Ei�Eo

i
Eo

i

�
�
�

�
�
�.

In a second step, we applied the overall framework to spin systems with sizes N · N spins with
N 2 ½25; 30; 35; 40; 45; 50; 60�. This allowed us to examine any size/complexity dependence of our results.

For an Ising spin system the definition of the fitness ki for a particular degree of freedom (single spin state)
is straightforward: ki :¼

P0
jJ ijsisj, where the restricted sum

P0 only takes nearest neighbors into account.

4. A measure of performance – time series analysis

The scaling of fluctuations in a time series with respect to time can be described by a single exponent c. It is
straightforward to show a relation between such fluctuations and the correlation associated with such a time
series. In general it holds for the squared fluctuations F2 and the correlation C that CðniterÞ � n�c

iter and
F 2ðniterÞ � n2�c

iter . Trends can, in particular, introduce a systematic bias in c and one usually wants to eliminate
such effects. The detrended fluctuation analysis (DFA) [36–38] procedure allows for the determination of
exponents c by omitting trends of polynomial order and recording the averaged squared fluctuation in the val-
ues encountered.

Here one decomposes the entire recorded history of e.g. energies En into N=l non-overlapping regions for a
time scale l and performs polynomial fitting of p(i)(n) of degree N to the data points. Detrending the time series
in each region i is done by setting EðiÞDFAðnÞ :¼ En � pðiÞðnÞ. One then computes the variances of this reduced
time series. The exponent c is finally determined from the scaling of the averaged variance with respect to
the segment size l by F2(l) � l2�c.

Note that c � 1 indicates a random-walk like behavior in the time series. If a computational ansatz for find-
ing minima shows this behavior in the suggested function values, the performance is obviously inferior and
unsatisfactory as we eventually observe ‘random guessing’. The rationale to use DFA in the analysis of global
optimization performance stems from the two potential phases of any stochastic global optimization run:
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Fig. 1. The averaged relative error �rel for the threshold-acceptance version of EO with respect to the threshold kTA. Error bars indicate
the standard deviation in the results taken over the test set. The left inset shows the DFA exponent c in third order DFA. Note the location
of the minimum in both data sets. The right inset show the DFA exponent versus the error. Obviously there is a strong connection between
small c and small �rel.
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(a) super-diffusive search (with trend, but ‘guided’) and (b) inefficient performance in a random-walk like fash-
ion (‘pure guessing’). To distinguish between these regimes one needs to obtain c.

DFA has been successfully used in the study of other global optimization algorithms. For example, we
showed that another stochastic global optimization approach, called Energy Landscape Paving, is optimal
under such an analysis [39]. DFA was also used [40] to analyze the performance of the Stochastic Tunneling
global optimization scheme [41,42] and helped to increase its performance. One further application is the
investigation of the scaling of fluctuations with respect to system size in the original Bak–Sneppen model [43].

In Fig. 1, we show the performance of threshold-acceptance EO with respect to a constant kTA. As noted
already above there exists a one-to-one-mapping to threshold-acceptance in fitness values, so keeping kTA

fixed is one of the potential ‘annealing’ schedules for the distributions pt
k. The analysis with respect to kTA

is a generic way to introduce a threshold while a fitness threshold is not generic – it is instead problem
dependent.

We indeed observe in Fig. 1 a best choice of kTA of around 50 which decreases the expected error in the
suggested global minimum �rel. The existence of such a choice was proven in [30].

5. Internal construction of optimal parameter

We can now use our finding on the fluctuations of energies to tune the internal parameter kTA and make it
time-dependent. As the algorithm improves the choice of kt

TA on its own, this EO formulation becomes param-

eter free and is thus much more preferable over any other known EO implementation, where one needs to
change the parameter in an a priori unknown manner to find the optimal regime.

In order to achieve this parameter free behavior, we define the adaptive extremal optimization (Adaptive
EO from now on) algorithm: (a) perform for given kTA a threshold-acceptance EO for n steps, (b) determine
the DFA exponent c for the time series of energies encountered, (c) fit a polynomial of degree two to the c of
the last three threshold-acceptance EO runs, (d) determine the minimum of this polynomial and extract a new
kTA that minimizes the approximated c(kTA)-curve and (e) iterate until satisfied. The first three c-values are
obtained in an initialization phase with equally spaced kTA. We note in passing that we also kept track of
the generated kTA. To avoid cycles in kTA-space we set kTA to a uniformly chosen value whenever a suggested
kTA had been visited before. A more detailed version of the procedure is shown in Appendix A.
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The rationale behind a second order polynomial in Adaptive EO is the following: Fig. 1 shows a monotonic
tendency in the curve c(kTA), thus we would also be doing fine with a steepest decent approach in kTA. Nev-
ertheless it is most advantageous to increase the speed of convergence. This can obviously be achieved by tak-
ing the (local) curvature of c(kTA) into account. Higher order terms would increase the rate of convergence
even more, but are harder to come by because of a longer initialization phase – and a longer initialization
phase might waste CPU time.

6. Results

Here we show the increased performance of such an adaptive choice over a rectangular rank distribution
with a fixed threshold. To this end Fig. 2 shows a comparison between the estimated errors �rel for the fixed
threshold kTA = 50, as derived from Fig. 1 and the error made by the adaptive version Adaptive EO. What is
astonishing is that at first glance Adaptive EO performs on average better than threshold-acceptance EO with
the optimal choice of kTA = 50. One would naively expect that Adaptive EO can at best match the perfor-
mance of threshold-acceptance EO. However, this is incorrect due to the various replica presented to the algo-
rithm: for each realization of a spin glass the optimal choice of kTA is in general different. Therefore the choice
kTA = 50 increases the performance of threshold-acceptance EO on the average. Adaptive EO is, on the other
hand, able to exploit the differences between the various replicas and to thus adapt to the actual energy land-
scape by choosing a different trajectory in kTA-space for each replica. A detailed analysis of the dynamics in k-
space must be postponed to a forthcoming publication as we want to focus on method development aspects in
this publication.

Keep in mind that for the Adaptive EO results we just performed 150 computations as the algorithm
adapts itself. To achieve such good performance with threshold-acceptance EO (open symbols in Fig. 2)
we tested the whole range of kTA as show in Fig. 1, thus eventually performing 24 · 150 = 3600 simulation
runs. We, therefore, not only gained more resolution in proposed energies but also reduced the CPU demand
tremendously.

As mentioned in Section 3, we repeated the whole study with larger systems to investigate size dependency.
Fig. 3 shows that the superior performance of Adaptive EO which appears to be independent of the system
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Fig. 2. The averaged relative error �rel for threshold-acceptance EO with a fixed threshold kTA = 50 (open circles) and the Adaptive EO
variant (filled boxes). Error bars indicate again the standard deviation in the results taken over the test set. The error bars for Adaptive EO
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significance of 75%.
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size. Adaptive EO is capable of the same performance as the best threshold-acceptance EO runs. However, in
real applications it is prohibitively expensive to scan for kbest

TA . Therefore, one would expect to end up with an
average performance for some sub-optimally performing kTA (right hand side of Fig. 3).

7. Comparison to simulated annealing

To analyze the dynamics of Adaptive EO further and show the qualitative difference to other well-known
global optimization algorithms simulated annealing [17] optimization runs on the spin glass replica of size
20 · 20 were performed. We searched for optimal parameters and an efficient cooling schedule (exponential
versus linear etc.) and identified a good cooling regime.

In comparison to Adaptive EO (Fig. 4) the performance of simulated annealing, measured in terms of the
relative error �rel, was inferior. We found �rel = 11.4% for simulated annealing and �rel = 5.1% for Adaptive
EO at maximal number of iterations.

It is interesting to note the difference in the dynamics between EO and Adaptive EO on the one hand
and simulated annealing on the other hand: the times when simulated annealing finds the best minimum in
a particular run exhibits a broad distribution. What is more striking is the fact that at larger iteration
numbers the ‘hits’ vanish altogether – indicating that one cannot expect simulated annealing to perform
better by allowing for more computations since the procedure has saturated and better minima are only
created by chance. The situation is completely different for EO and Adaptive EO. The best minima ever
encountered in a single run occur mostly in the final phase of the respective run (close to the maximal
number of iterations 2 · 107). Thus increasing the maximal number of iterations is likely to create even
better minima.

The data in Fig. 4 allows for the following interpretation: simulated annealing is ‘frozen’. It cannot escape
local minima anymore at some intermediate iteration number, therefore increasing the overall computational
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effort will only gain so much. EO on the other hand is not doomed to freeze instead it is very efficiently cre-
ating better and better minima throughout the iterations.

The ‘clustering’ of Adaptive EO results at niter = 5 · 105 in Fig. 4 is a direct result from our choice of n in
the algorithm shown in Appendix A and the fact that our implementation reports results only every n itera-
tions (to avoid too much I/O-load).

8. Conclusions

In this study, we have implemented a threshold-acceptance procedure for the extremal optimization
algorithm in accordance with analytical results of Heilmann et al. [30]. We have then motivated the usage
of standard protocols of time series analysis in order to understand the dynamics of the optimization run.
The results show that for a certain choice of the threshold parameter optimal performance is achieved.
Arguments from random-walk theory enabled us to assign a ‘guided’ dynamics to this parameter regime,
while insufficient performance was observed for random-walk like behavior. This can be attributed to ran-
dom guessing.

Using this insight we formulated a parameter free extremal optimization procedure that adjusts its internal
parameter to avoid random-walk like behavior. We were able to show that in 1/24 of the CPU time we found
with 75% significance better results. Thereby one can eventually boost the speed and increase the accuracy of
the method at the same time. It was also shown that this behavior has no size-dependency, thus rendering the
adaptive extremal optimization procedure proposed in this study a versatile, generic and parameter free
approach to global optimization.

The results were obtained for a particular difficult optimization problem (spin glass) suggesting that the
approach is transferable to ‘easier’ problems without further thought. However, one should keep in mind that
‘‘There’s no free lunch’’ as the saying goes. Wolpert [44] and Sharpe [45] have discussed in length how this
applies also to the global optimization problem. In particular Wolpert has shown rigiously that what an algo-
rithm gains in performance on one problem it will loose for another. Therefore, it is always advisable to check
the performance of several algorithms for every new optimization class at hand. There would not be the ‘one-
and-only’ optimization algorithm. Nevertheless, this paper alleviates the burden of such efforts by two main
contributions: first, it demonstrates the applicability of the proposed analysis technique (time series analysis of
visited minima and DFA) to all algorithms and all optimization problem classes. Second, it makes EO effec-
tively parameter free which reduces the CPU time significantly.
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Appendix A. Pseudo-code for the adaptive extremal optimization method

In the following, we show in pseudo-code the adaptive extremal optimization procedure for N spins. Each
spin i contributes an energy ki :¼

P0
jJ ijsisj to the overall energy E.

In the pseudo-code rand(x) returns an uniformly distributed, integer number from 1 to x. n is some rule-of-
thumb value that only influences how often the DFA-exponent c is computed. It should be large enough to
allow for sufficient sampling. We found no difference in the results for n � 104–5 · 105. Larger n will even
improve the sampling more.
Algorithm 1 Adaptive extremal optimization

kTA :¼ rand(N)
computed :¼ 0
for iter :¼ 1 to maxiter

// Threshold Extremal Optimization with threshold kTA
sort ki in descending order
pick a random spin within the threshold j :¼ rand(kTA)
flip that spin j in all ki’s
update energy E
insert E into EnergyHistory
if(E < Ebest) then

print E and iter
Ebest :¼ E

endif
// DFA computation and adjustment of kTA to find minimal c
if(iter mod n == 0) then

computed :¼ computed + 1

c :¼ compute_DFA_exponent(EnergyHistory)

insert c into (kTA,c)-set

clean EnergyHistory
if(computed P 3) then // enough data

fit f(k) = a Æ k2 + b Æ k + d to (kTA,c)-set
solve f(kTA) = 0 for kTA
delete oldest entry in (kTA,c)-set
if (kTA) 2 {kvisited} then

kTA :¼ rand(N) // do not return to a previously visited value
endif
else // not enough data yet
kTA :¼ rand(N)

endif
insert kTA in {kvisited}

endif
endfor
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